학술논문

Meta-Learning With Distributional Similarity Preference for Few-Shot Fault Diagnosis Under Varying Working Conditions
Document Type
Periodical
Source
IEEE Transactions on Cybernetics IEEE Trans. Cybern. Cybernetics, IEEE Transactions on. 54(5):2746-2756 May, 2024
Subject
Signal Processing and Analysis
Communication, Networking and Broadcast Technologies
Robotics and Control Systems
General Topics for Engineers
Components, Circuits, Devices and Systems
Computing and Processing
Power, Energy and Industry Applications
Metalearning
Employee welfare
Task analysis
Fault diagnosis
Training
Data models
Feature extraction
Distribution similarity feature
fault diagnosis
few-shot problem
meta-learning
varying working conditions
Language
ISSN
2168-2267
2168-2275
Abstract
Few-shot fault diagnosis is a challenging problem for complex engineering systems due to the shortage of enough annotated failure samples. This problem is increased by varying working conditions that are commonly encountered in real-world systems. Meta-learning is a promising strategy to solve this point, open issues remain unresolved in practical applications, such as domain adaptation, domain generalization, etc. This article attempts to improve domain adaptation and generalization by focusing on the distribution-shift robustness of meta-learning from the task generation perspective. In fact, few-shot fault diagnosis under varying working conditions allows to address the distribution shift problem in a natural way. An unsupervised across-tasks meta-learning strategy with distributional similarity preference is proposed, where the core is the distribution-distance-weighting mechanism. Differently from the naive random meta-train task generation strategy used in existing meta-learning methods, the source instances that present a more similar distribution with respect to the target instances gain larger weightings in the task generation. This strategy leads to a meta-task training set that is enough diverse, and at the same time can be easily learned due to the distribution similarity features of the source tasks. The proposed method introduces the concept of maximum mean discrepancy that is applied to derive the distribution distance of the measurements. Moreover, a model-agnostic meta-learning is applied to realize few-shot fault diagnosis under varying working conditions. The proposed solutions are verified and compared by considering two public datasets used for bearing fault diagnosis. The results show that the proposed strategy outperforms different related few-shot fault diagnosis methods under varying working conditions. Moreover, it is thus proved that, meta-learning with distribution similarity feature represents an effective approach for domain adaptation and generalization.