학술논문

A Novel Constructive Unceasement Conditional Random Field and Dynamic Bayesian Network Model for Attack Prediction on Internet of Vehicle
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:24644-24658 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Intrusion detection
Security
Internet of Vehicles
Bayes methods
Predictive models
Machine learning algorithms
Automobiles
Anomaly detection
Threat assessment
Intelligent transportation systems
Intelligent vehicles
conditional random field Bayesian model
cyberthreat vulnerabilities
Internet of Vehicles (IoV)
Language
ISSN
2169-3536
Abstract
Today’s Internet of Vehicles (IoV) has soared by leveraging data gathered from transportation systems, yet it grapples with security concerns stemming from network vulnerabilities, exposing it to cyber threats. This study proposes an innovative method to anticipate anomalies and exploit IoV services related to road traffic. Using the Unceasement Conditional Random Field Dynamic Bayesian Network Model (U-CRF-DDBN), this approach predicts the impact of network attacks, strategically managing vulnerable nodes and attackers. Through experimentation and comparisons with existing methods, our model demonstrates its effectiveness in mitigating IoV vulnerabilities. The U-CRF-DDBN strikes a superior balance, outperforming other approaches in intrusion detection for Internet of Vehicles systems. Evaluating its performance on the NSL-KDD dataset reveals a promising average Detection Rate of 93.512% and a low False Acceptance Rate of 0.125% for known attacks, highlighting its robustness. However, with unknown attacks, while the Detection Rate remains at 74.157%, there is an increased FAR of 16.47%, resulting in a slightly lower F1-score of 0.822.