학술논문

A Comparison of Delay-and-Add and Maximum Likelihood Estimation for Velocity-Selective Recording Using Multi-Electrode Cuffs
Document Type
Conference
Source
2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Engineering in Medicine & Biology Society (EMBC), 2022 44th Annual International Conference of the IEEE. :4127-4130 Jul, 2022
Subject
Bioengineering
Q-factor
Peripheral nervous system
Maximum likelihood estimation
Channel estimation
Implants
Electromyography
Recording
Language
ISSN
2694-0604
Abstract
Extracting information from the peripheral nervous system with implantable devices remains a significant challenge that limits the advancement of closed-loop neural prostheses. Linear electrode arrays can record neural signals with both temporal and spatial selectivity, and velocity selective recording using the delay-and-add algorithm can enable classification based on fibre type. The maximum likelihood estimation method also measures velocity and is frequently used in electromyography but has never been applied to electroneurography. Therefore, this study compares the two algorithms using in-vivo recordings of electrically evoked compound action potentials from the ulnar nerve of a pig. The performance of these algorithms was assessed using the velocity quality factor (Q-factor), computational time and the influence of the number of channels. The results show that the performance of both algorithms is significantly influenced by the number of channels in the recording array, with accuracies ranging from 77% with only two channels to 98% for 11 channels. Both algorithms were comparable in accuracy and Q-factor for all channels, with the delay-and-add having a slight advantage in the Q-factor.