학술논문

Epistemic Uncertainty-Aware Barlow Twins Reduced Order Modeling for Nonlinear Contact Problems
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:62970-62985 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Read only memory
Reduced order systems
Uncertainty
Manifolds
Computational modeling
Mathematical models
Decoding
Reduced order modeling
data-driven modeling
uncertainty quantification
nonlinear contact problems
material science
Language
ISSN
2169-3536
Abstract
This study presents a method for constructing machine learning-based reduced order models (ROMs) that accurately simulate nonlinear contact problems while quantifying epistemic uncertainty. These purely non-intrusive ROMs significantly lower computational costs compared to traditional full order models (FOMs). The technique utilizes adversarial training combined with an ensemble of Barlow twins reduced order models (BT-ROMs) to maximize the information content of the nonlinear reduced manifolds. These lower-dimensional manifolds are equipped with Gaussian error estimates, allowing for quantifying epistemic uncertainty in the ROM predictions. The effectiveness of these ROMs, referred to as UQ-BT-ROMs, is demonstrated in the context of contact between a rigid indenter and a hyperelastic substrate under finite deformations. The ensemble of BT-ROMs improves accuracy and computational efficiency compared to existing alternatives. The relative error between the UQ-BT-ROM and FOM solutions ranges from approximately 3% to 8% across all benchmarks. Remarkably, this high level of accuracy is achieved at a significantly reduced computational cost compared to FOMs. For instance, the online phase of the UQ-BT-ROM takes only 0.001 seconds, while a single FOM evaluation requires 63 seconds. Furthermore, the error estimate produced by the UQ-BT-ROMs reasonably captures the errors in the ROMs, with increasing accuracy as training data increases. The ensemble approach improves accuracy and computational efficiency compared to existing alternatives. The UQ-BT-ROMs provide a cost-effective solution with significantly reduced computational times while maintaining a high level of accuracy.