학술논문

Real-Time Seismocardiogram Feature Extraction Using Adaptive Gaussian Mixture Models
Document Type
Periodical
Source
IEEE Journal of Biomedical and Health Informatics IEEE J. Biomed. Health Inform. Biomedical and Health Informatics, IEEE Journal of. 27(8):3889-3899 Aug, 2023
Subject
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Signal Processing and Analysis
Feature extraction
Blood
Real-time systems
Hemodynamics
Biomedical monitoring
Electrocardiography
Tracking
Seismocardiogram
cardiac time intervals
gaussian mixture model
dijkstra algorithm
real-time processing
hypovolemia
Language
ISSN
2168-2194
2168-2208
Abstract
Wearable systems can provide accurate cardiovascular evaluations by estimating hemodynamic indices in real-time. Key hemodynamic parameters can be non-invasively estimated using the seismocardiogram (SCG), a cardiomechanical signal whose features link to cardiac events like aortic valve opening (AO) and closing (AC). However, tracking a single SCG feature is unreliable due to physiological changes, motion artifacts, and external vibrations. This work proposes an adaptable Gaussian Mixture Model (GMM) to track multiple AO/AC correlated features in quasi-real-time from the SCG. The GMM calculates the likelihood of an extremum being an AO/AC feature for each SCG beat. The Dijkstra algorithm selects heartbeat-related extrema, and a Kalman filter updates the GMM parameters while filtering features. Tracking accuracy is tested on a porcine hypovolemia dataset with varying noise levels. Blood volume loss estimation accuracy is also evaluated using the tracked features on a previously developed model. Experimental results show a 4.5 ms tracking latency and average root mean square errors (RMSE) of 1.47 ms for AO and 7.67 ms for AC at 10 dB noise, and 6.18 ms for AO and 15.3 ms for AC at −10 dB noise. When considering all AO/AC correlated features, the combined RMSE remains in similar ranges, specifically 2.70 ms for AO and 11.91 ms for AC at 10 dB noise, and 7.50 ms for AO and 16.35 ms for AC at −10 dB noise. The proposed algorithm offers low latency and RMSE for all tracked features, making it suitable for real-time processing. These systems enable accurate, timely extraction of hemodynamic indices for many cardiovascular monitoring applications, including trauma care in field settings.