학술논문

Discriminating Land Use and Land Cover Classes in Brazil Based on the Annual PROBA-V 100 m Time Series
Document Type
Periodical
Source
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of. 13:3409-3420 2020
Subject
Geoscience
Signal Processing and Analysis
Power, Energy and Industry Applications
Forestry
Vegetation mapping
Remote sensing
Earth
Time series analysis
Artificial satellites
Image resolution
Fraction images
image processing
linear spectral mixing model (LSMM)
random forest (RF)
Language
ISSN
1939-1404
2151-1535
Abstract
Brazil, with more than 8 million km 2 , presents six different biomes, ranging from natural grasslands (Pampa biome) to tropical rainfall forests (Amazônia biome), with different land-use types (mostly pasturelands and croplands) and pressures (mainly in the Cerrado biome). The objective of this article is to present a new method to discriminate the most representative land use and land cover (LULC) classes of Brazil, based on the PROBA-V images. The images were converted into vegetation, soil, and shade fraction images by applying the linear spectral mixing model. Then, the pixel-based, highest proportion, annual mosaics of the fraction images, and their corresponding standard deviation images were derived and classified using the random forest algorithm. The following LULC classes were considered: forestlands, shrublands, grasslands, croplands, pasturelands, water bodies, and others. An agreement analysis was conducted with two available LULC maps derived from the Landsat satellite, the MapBiomas, and the Finer Resolution Observation and Monitoring-Global Land Cover (FROM-GLC) projects. Forestlands (412 million ha) and pasturelands (242 million ha) were the two most representative LULC classes; and croplands accounted for 30 million ha. The results presented an overall agreement of 69% and 58% with the MapBiomas and FROM-GLC projects, respectively. The proposed method is a good alternative to support operational projects of LULC map production that are important for planning biodiversity conservation or environmentally sustainable land occupation.