학술논문

Dynamic Field-Programmable Logic-Driven Soft Exosuit
Document Type
Periodical
Source
IEEE Sensors Journal IEEE Sensors J. Sensors Journal, IEEE. 23(10):10935-10949 May, 2023
Subject
Signal Processing and Analysis
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Robotics and Control Systems
Fabrics
Sensors
Medical services
Dynamics
Integrated circuit interconnections
Combinational circuits
Clothing
Combinational logic
dynamic interchangable textile circuitry
fabric soft exosuit
field programmable
Language
ISSN
1530-437X
1558-1748
2379-9153
Abstract
The next generation of etextiles foresees an era of smart wearable garments where embedded seamless intelligence provides the ability to sense, process, and perform. Core to this vision is embedded textile functionality enabling dynamic configuration. In this article, we detail a methodology, design, and implementation of a dynamic field-programmable logic-driven fabric soft exosuit. Dynamic field programmability (FP) allows the soft exosuit to alter its functionality and adapt to specific exercise programs depending on the wearers need. The dynamic FP is enabled through motion-based control arm movements of the soft exosuit triggering momentary sensors embedded in the fabric exosuit at specific joint placement points (right arm: wrist and elbow). The embedded circuitry in the fabric exosuit is implemented using a layered and interchangeable approach. This includes logic gate patches (AND, OR, NOT) and a layered textile interconnection panel. This modular and interchangeable design enhances the soft exosuits flexibility and adaptability. A truth table aligning to a rehabilitation healthcare use case was utilized. Tests were completed validating the FP of the soft exosuit and its capability to switch between its embedded logic-driven circuitry and its operational and functionality options controlled by motion movement of the wearers right arm (elbow and wrist). Iterative exercise movement and acceleration-based tests were completed to validate the functionality of the field-programmable logic-driven fabric exosuit. We demonstrate a working soft exosuit prototype with motion-controlled operational functionality that can be applied to rehabilitation applications.