학술논문

Multi-Point Coordination in Massive MIMO Systems With Sectorized Antennas
Document Type
Periodical
Source
IEEE Transactions on Communications IEEE Trans. Commun. Communications, IEEE Transactions on. 69(11):7559-7575 Nov, 2021
Subject
Communication, Networking and Broadcast Technologies
Antenna radiation patterns
Channel estimation
Contamination
Optimization
Massive MIMO
Antenna arrays
Precoding
pilot contamination
three-fold sectorization
coordinated multi-point
CoMP
power control
Language
ISSN
0090-6778
1558-0857
Abstract
Non-cooperative cellular massive MIMO, combined with power control, is known to lead to significant improvements in per-user throughput compared with conventional LTE technology. In this paper, we investigate further refinements to massive MIMO, first, in the form of three-fold sectorization, and second, coordinated multi-point operation (with and without sectorization), in which the three base stations cooperate in the joint service of their users. For these scenarios, we analyze the downlink performance for both maximum-ratio and zero-forcing precoding and derive closed-form lower-bound expressions on the achievable rate of the users. These expressions are then used to formulate power optimization problems with two throughput fairness criteria: ${i}$ ) network-wide max-min fairness, and ii ) per-cell max-min fairness. Furthermore, we provide centralized and decentralized power control strategies to optimize the transmit powers in the network. We demonstrate that employing sectorized antenna elements mitigates the detrimental effects of pilot contamination by rejecting a portion of interfering pilots in the spatial domain during channel estimation phase. Simulation results with practical sectorized antennas reveal that sectorization and multi-point coordination combined with sectorization lead to more than $1.7\times $ and $2.6\times $ improvements in the 95%-likely per-user throughput, respectively.