학술논문

Real-Time Multirate Multiband Amplification for Hearing Aids
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:54301-54312 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Filter banks
Hearing aids
Digital filters
Auditory system
Real-time systems
Bandwidth
Complexity theory
digital signal processing
auditory system
channelization
wearable computers
speech processing
open source hardware
real-time systems
embedded software
research initiatives
Language
ISSN
2169-3536
Abstract
Hearing loss is a common problem affecting the quality of life for thousands of people. However, many individuals with hearing loss are dissatisfied with the quality of modern hearing aids. Amplification is the main method of compensating for hearing loss in modern hearing aids. One common amplification technique is dynamic range compression, which maps audio signals onto a person’s hearing range using an amplification curve. However, due to the frequency dependent nature of the human cochlea, compression is often performed independently in different frequency bands. This paper presents a real-time multirate multiband amplification system for hearing aids, which includes a multirate channelizer for separating an audio signal into eleven standard audiometric frequency bands, and an automatic gain control system for accurate control of the steady state and dynamic behavior of audio compression as specified by ANSI standards. The spectral channelizer offers high frequency resolution with low latency of 5.4 ms and about $14\times $ improvement in complexity over a baseline design. Our automatic gain control includes a closed-form solution for satisfying any designated attack and release times for any desired compression parameters. The increased frequency resolution and precise gain adjustment allow our system to more accurately fulfill audiometric hearing aid prescriptions.