학술논문

Modeling Power Consumption of NAND Flash Memories Using FlashPower
Document Type
Periodical
Source
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on. 32(7):1031-1044 Jul, 2013
Subject
Components, Circuits, Devices and Systems
Computing and Processing
Ash
Computer architecture
Capacitance
Threshold voltage
Microprocessors
Logic gates
Transistors
Analytical models
NAND Flash memory
power
Language
ISSN
0278-0070
1937-4151
Abstract
Flash is the most popular solid-state memory technology used today. A range of consumer electronics products, such as cell-phones and music players, use flash memory for storage and flash memory is increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and servers. There is a rich microarchitectural design space for flash memory, and there are several architectural options for incorporating flash into the memory hierarchy. Exploring this design space requires detailed insights into the power characteristics of flash memory. In this paper, we present FlashPower, a detailed power model for the two most popular variants of NAND flash, namely, the single-level cell (SLC) and 2-bit Multi-Level Cell (MLC) based flash memory chips. FlashPower is built on top of CACTI, a widely used tool in the architecture community for studying various memory organizations. FlashPower takes several parameters like the device technology, microarchitectural layout, bias voltages and workload parameters as input to estimate the power consumption of a flash chip during its various operating modes. We validate FlashPower against chip power measurements from several different manufacturers and show that our results are comparable to the actual chip measurements. We illustrate the versatility of the tool in a design space exploration of power optimal flash memory array configurations.