학술논문

Handling of bad pixels on pixelated solid state detectors
Document Type
Conference
Source
2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE. :2916-2920 Oct, 2012
Subject
Bioengineering
Signal Processing and Analysis
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Bad Pixel Correction
Cardiac SPECT
Solid State Detectors
Low-dose CT
Least Gradient Approach
Language
ISSN
1082-3654
Abstract
Bad pixel correction on pixelated solid-state detectors typically uses the average of the direct neighboring pixels (AVG) to derive the value of a bad pixel. However, the AVG approach was suboptimal for high resolution imaging. Therefore, we developed a least gradient approach (LGA) in this work. In the LGA approach, the gradients of the image in a 5×5 box centered at the bad pixel were calculated along the two orthogonal and two diagonal directions. The value of the bad pixel was derived from the average of the two neighboring pixels along the direction in which the gradient was the least. For 18 cardiac SPECT studies, we added to the data randomly generated bad pixels and bad pixels in a specially designed pattern and then corrected the bad pixels using the AVG approach. Images reconstructed from the bad-pixel-free data and the bad-pixel-corrected data were compared. For high resolution imaging, we used line and bar phantom studies to evaluate the AVG and LGA approaches on a pixelated solid-state gamma camera. Patient studies showed no visible qualitative or significant quantitative difference between the images reconstructed from the bad-pixel-free and bad-pixel-corrected data. The maximum segment change ranged from 0% to 7.4% with average of 3.6 for data with randomly generated bad pixels. Blind reading of the images by an expert nuclear cardiologist showed no diagnostic difference for any of the patients. The line phantom studies showed two bad pixels not corrected by the AVG approach but corrected by the LGA approach. Bar phantom studies showed ten bad pixels not corrected by the AVG approach. But 9 out the 10 bad pixels were corrected using the LGA approach. The commonly used averaging approach (AVG) was effective for cardiac SPECT imaging but the least gradient approach (LGA) developed in this work was more effective for high resolution imaging.