학술논문

Adversarial Robustness of Deep Learning-Based Malware Detectors via (De)Randomized Smoothing
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:61152-61162 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Malware
Smoothing methods
Detectors
Training
Robustness
Feature extraction
Payloads
Machine learning
Deep learning
Adversarial defense
(de)randomized smoothing
evasion attacks
machine learning
malware detection
Language
ISSN
2169-3536
Abstract
Deep learning-based malware detectors have been shown to be susceptible to adversarial malware examples, i.e. malware examples that have been deliberately manipulated in order to avoid detection. In light of the vulnerability of deep learning detectors to subtle input file modifications, we propose a practical defense against adversarial malware examples inspired by (de)randomized smoothing. In this work, we reduce the chances of sampling adversarial content injected by malware authors by selecting correlated subsets of bytes, rather than using Gaussian noise to randomize inputs like in the Computer Vision domain. During training, our chunk-based smoothing scheme trains a base classifier to make classifications on a subset of contiguous bytes or chunk of bytes. At test time, a large number of chunks are then classified by a base classifier and the consensus among these classifications is then reported as the final prediction. We propose two strategies to determine the location of the chunks used for classification: 1) randomly selecting the locations of the chunks and 2) selecting contiguous adjacent chunks. To showcase the effectiveness of our approach, we have trained two classifiers with our chunk-based smoothing schemes on the BODMAS dataset. Our findings reveal that the chunk-based smoothing classifiers exhibit greater resilience against adversarial malware examples generated with state-of-the-art evasion attacks, outperforming a non-smoothed classifier and a randomized smoothing-based classifier by a great margin.