학술논문

Selective Encryption of the Versatile Video Coding Standard
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:21821-21835 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Encryption
Cryptography
Bit rate
Syntactics
Encoding
Standards
Complexity theory
Versatile video coding
joint crypto-compression
selective encryption
video security
Language
ISSN
2169-3536
Abstract
versatile video coding (VVC) is the next generation video coding standard developed by the joint video experts team (JVET) and released in July 2020. VVC introduces several new coding tools providing a significant coding gain over the high efficiency video coding (HEVC) standard. It is well known that increasing the coding efficiency adds more dependencies in the video bitstream making format-compliant encryption with the standard more challenging. In this paper we tackle the problem of selective encryption of the VVC standard in format-compliant and constant bitrate. These two constraints ensure that the encrypted bitstream can be decoded by any VVC decoder while the bitrate remains unchanged by the encryption. The selective encryption of all possible VVC syntax elements is investigated. A new algorithm is proposed to encrypt in format-compliant and constant bitrate the transform coefficients (TCs) together with other syntax elements at the level of the entropy encoder. The proposed solution was integrated and assessed under the VVC reference software model version 6.0. Experimental results showed that encryption drastically decreases the video quality while the encryption is robust against several types of attacks. The encryption space is estimated in the range of 15% to 26% of the bitstream size resulting in a lightweight encryption process. The web page of this work is publicly available at https://gugautie.github.io/sevvc/.