학술논문

Characterisation of SiC Varistor Quench Protection Operating at 4 Kelvin for Use With Superconducting Magnets
Document Type
Periodical
Source
IEEE Transactions on Applied Superconductivity IEEE Trans. Appl. Supercond. Applied Superconductivity, IEEE Transactions on. 33(5):1-5 Aug, 2023
Subject
Fields, Waves and Electromagnetics
Engineered Materials, Dielectrics and Plasmas
Varistors
Superconducting magnets
Temperature measurement
Temperature
Silicon carbide
Temperature dependence
Cryogenics
Superconductor
Quench Protection
Energy Extraction
Varistor
Language
ISSN
1051-8223
1558-2515
2378-7074
Abstract
Silicon carbide (SiC) composite high-energy varistors have been demonstrated as a viable alternative to linear resistors as energy extraction devices during an abrupt loss of superconductivity in a magnet, called a quench. These have typically been installed external to the cryostat at ambient temperatures, but for some superconducting magnets it may be beneficial to mount the varistors within the cryostat in vacuum, a gaseous environment, or submerged in liquid cryogens. Varistors are semiconductors and therefore exhibit a temperature-dependent voltage–current relationship, so characterising their behaviour at low temperatures is important to predict their energy extraction behaviour. In this paper we present characterisation data of SiC varistor devices from 4–300 K: voltage-current characteristics, thermal conductivity, specific heat capacity, thermal expansion, and flexural strength. These varistors are a candidate for protection at 1.9 K of the MCBY magnets, currently being built at Uppsala University for CERN.