학술논문

Toward Model Reduction for Power System Transients With Physics-Informed PDE
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:65118-65125 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Mathematical models
Power system dynamics
Reduced order systems
Power systems
Transient analysis
Machine learning
Power grids
disturbance propagation
electromechanical waves
inter-area oscillations
physics-informed machine learning
Language
ISSN
2169-3536
Abstract
This manuscript reports the first step towards building a robust and efficient model reduction methodology to capture transient dynamics in a transmission level electric power system. Such dynamics is normally modeled on seconds-to-tens-of-seconds time scales by the so-called swing equations, which are ordinary differential equations defined on a spatially discrete model of the power grid. Following Seymlyen (1974) and Thorpe, Seyler, and Phadke (1999), we suggest to map the swing equations onto a linear, inhomogeneous Partial Differential Equation (PDE) of parabolic type in two space and one time dimensions with time-independent coefficients and properly defined boundary conditions. We illustrate our method on the synchronous transmission grid of continental Europe. We show that, when properly coarse-grained, i.e., with the PDE coefficients and source terms extracted from a spatial convolution procedure of the respective discrete coefficients in the swing equations, the resulting PDE reproduces faithfully and efficiently the original swing dynamics. We finally discuss future extensions of this work, where the presented PDE-based modeling will initialize a physics-informed machine learning approach for real-time modeling, $n-1$ feasibility assessment and transient stability analysis of power systems.