학술논문

Analysis and Comparison of Notch Filter and Capacitor Voltage Feedforward Active Damping Techniques for LCL Grid-Connected Converters
Document Type
Periodical
Source
IEEE Transactions on Power Electronics IEEE Trans. Power Electron. Power Electronics, IEEE Transactions on. 34(4):3958-3972 Apr, 2019
Subject
Power, Energy and Industry Applications
Aerospace
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Fields, Waves and Electromagnetics
General Topics for Engineers
Nuclear Engineering
Signal Processing and Analysis
Transportation
Damping
Capacitors
Resonant frequency
Harmonic analysis
Robustness
Inductance
Impedance
AC/DC converter
active damping
current control
converter control
LCL filter
notch filter
weak grid
Language
ISSN
0885-8993
1941-0107
Abstract
The use of LCL filters is a well-accepted solution to attenuate the harmonics created by the pulsewidth modulation. However, inherently LCL filters have a resonance region where the unwanted harmonics are amplified, which can compromise stability. Several techniques have been developed in order to tackle this issue. At first the use of passive damping, by intentionally increasing the resistance of the LCL filter components, is a simple, robust, and straightforward solution; however, it decreases the overall efficiency of the system, and hence in general is unwanted. Alternatively, active damping strategies, where the resonance damping is provided by the current controller, are of major interest. This paper analyzes the robustness of the closed-loop dynamics when different active damping techniques are implemented. The analyzed active damping techniques, which have been selected because of their readiness and simplicity, are: 1) filtered capacitor voltage feedforward and 2) second-order filters in cascade with the main current controller. The impedance/admittance stability formulation is used to model the system, which has been proven to be very convenient for the assessment of robustness. Experimental tests are provided in order to show the accuracy of the analysis and verify the findings. This paper proves that filtered capacitor voltage feedforward is a more robust and reliable solution than implementations based on cascade notch filters.