학술논문

Modeling Microwave Emission of Corn Crop Considering Leaf Shape and Orientation Under the Physical Optics Approximation
Document Type
Periodical
Source
IEEE Transactions on Geoscience and Remote Sensing IEEE Trans. Geosci. Remote Sensing Geoscience and Remote Sensing, IEEE Transactions on. 58(12):8316-8331 Dec, 2020
Subject
Geoscience
Signal Processing and Analysis
Vegetation mapping
Microwave measurement
Shape
Microwave theory and techniques
Scattering
Distribution functions
Microwave radiometry
Agriculture
leaf inclination angle distribution
leaf shape
microwave radiometry
multiple scattering modeling
Language
ISSN
0196-2892
1558-0644
Abstract
The objective of this article is a systematic investigation of the sensitivity of C- and X-band emissions to leaf shape and orientation for various growth stages of corn. To simulate these effects, we used the model developed at Tor Vergata University (TOV model), which is based on a matrix doubling algorithm considering multiple scattering. Corn leaves have specific properties of shape, curvature, and orientation. We have compared different approaches, including segmented elliptical disk oriented following leaf curvature, unique elliptical disk per leaf, and segmented circular disk with size determined by the shorter leaf dimension and following the leaf curvature. Moreover, widespread leaf inclination angle distribution functions combined with in situ measurements of leaf inclination angle are adopted. The scatterers’ phase matrix calculations are based on the physical optics approximation. Simulations are conducted with the ground-measured soil and vegetation properties as inputs and evaluated against the corresponding ground-based, multifrequency radiometer observations carried out in four different years over Chinese sites. The investigations show that in most cases the segmented circular disk assumption shows the best correspondence to the measurements over intermediate growth stages when the vegetation heights lie between 50 and 200 cm, and the unique elliptical disk model achieves the best correspondence for the later growth stages when the vegetation heights are larger than 200 cm with prefer-erectophile distribution of leaf orientation. The use of in situ leaf inclination angle measurements can improve the model accuracy by up to 25 K for tall vegetation heights compared with random distribution assumption.