학술논문

Precise Trajectory Tracking of Multi-Rotor UAVs Using Wind Disturbance Rejection Approach
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:91796-91806 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Quadrotors
Observers
Trajectory tracking
Aircraft
Rotors
Uncertainty
Sensor systems
Disturbance rejection
Lipschitz observer
quadrotor
trajectory
Language
ISSN
2169-3536
Abstract
This paper discusses the resilience of the UAV quadrotor to wind disturbances. An unknown input-state observer is presented that uses the Lipschitz method to estimate the internal states and disturbances of the quadrotor and compensate for them by varying the velocities of the four rotors. The observer intends to use existing sensor measurements to estimate the unknown states of the quadrotor and reconstruct the three-dimensional wind disturbances. The estimated states and external disturbances are sent to the PD controller, which compensates for the disturbances to achieve the desired position and attitude, as well as robustness and accuracy. The Lipschitz observer was designed using the LMI approach, and the results were validated using Matlab/Simulink and using the Parrot Mambo mini quadrotor.