학술논문

Simplified EEG inverse solution for BCI real-time implementation
Document Type
Conference
Source
2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the. :4051-4054 Aug, 2016
Subject
Bioengineering
Brain modeling
Electroencephalography
Computational modeling
Barium
Imaging
Data models
Brain-computer interface
EEG brain imaging
Forward problem
Beamformers
Greedy Search
Language
ISSN
1557-170X
1558-4615
Abstract
EEG brain imaging has become a promising approach in Brain-computer interface applications. However, accurate reconstruction of active regions and computational burden are still open issues. In this paper, we propose to use a simplified forward model that includes the reduction of the cortical dipoles based on Brodmann areas together with state-of-the-art EEG brain imaging techniques. With this approach the well known Beamformers and Greedy Search inverse solutions become feasible for real-time implementation, while guaranteeing lower localization error than previous approaches used in BCI. This methodology was tested with synthetic and real EEG data from a visual attention study. Results show zero localization error in terms of active cortical regions estimation in single 1 s trial datasets, with a computation time of 1.1 s in a non-specialized personal computer. These results open the possibility to obtain in real-time information of active cortical regions in Brain-computer interfaces.