학술논문

Bayesian Estimate of Mean Proper Scores for Diversity-Enhanced Active Learning
Document Type
Periodical
Source
IEEE Transactions on Pattern Analysis and Machine Intelligence IEEE Trans. Pattern Anal. Mach. Intell. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 46(5):3463-3479 May, 2024
Subject
Computing and Processing
Bioengineering
Uncertainty
Costs
Bayes methods
Computational modeling
Task analysis
Convergence
Predictive models
Active learning
artificial intelligence
image classification
machine learning
text classification
Language
ISSN
0162-8828
2160-9292
1939-3539
Abstract
The effectiveness of active learning largely depends on the sampling efficiency of the acquisition function. Expected Loss Reduction (ELR) focuses on a Bayesian estimate of the reduction in classification error, and more general costs fit in the same framework. We propose Bayesian Estimate of Mean Proper Scores (BEMPS) to estimate the increase in strictly proper scores such as log probability or negative mean square error within this framework. We also prove convergence results for this general class of costs. To facilitate better experimentation with the new acquisition functions, we develop a complementary batch AL algorithm that encourages diversity in the vector of expected changes in scores for unlabeled data. To allow high-performance classifiers, we combine deep ensembles, and dynamic validation set construction on pretrained models, and further speed up the ensemble process with the idea of Monte Carlo Dropout. Extensive experiments on both texts and images show that the use of mean square error and log probability with BEMPS yields robust acquisition functions and well-calibrated classifiers, and consistently outperforms the others tested. The advantages of BEMPS over the others are further supported by a set of qualitative analyses, where we visualise their sampling behaviour using data maps and t-SNE plots.