학술논문

Interpretable Deep Learning for Neuroimaging-Based Diagnostic Classification
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:55474-55490 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Convolutional neural networks
Classification algorithms
Vectors
Training
Feature extraction
Brain modeling
Neuroimaging
Resting-state functional magnetic resonance
resting-state functional connectivity
interpretable deep learning
Language
ISSN
2169-3536
Abstract
Deep neural networks (DNN) are increasingly being used in neuroimaging research for the diagnosis of brain disorders and understanding of human brain. Despite their impressive performance, their usage in medical applications will be limited unless there is more transparency on how these algorithms arrive at their decisions. We address this issue in the current report. A DNN classifier was trained to discriminate between healthy subjects and those with posttraumatic stress disorder (PTSD) using brain connectivity obtained from functional magnetic resonance imaging data. The classifier provided 90% accuracy. Brain connectivity features important for classification were generated for a pool of test subjects and permutation testing was used to identify significantly discriminative connections. Such heatmaps of significant paths were generated from 10 different interpretability algorithms based on variants of layer-wise relevance and gradient attribution methods. Since different interpretability algorithms make different assumptions about the data and model, their explanations had both commonalities and differences. Therefore, we developed a consensus across interpretability methods, which aligned well with the existing knowledge about brain alterations underlying PTSD. The confident identification of more than 20 regions, acknowledged for their relevance to PTSD in prior studies, was achieved with a voting score exceeding 8 and a family-wise correction threshold below 0.05. Our work illustrates how robustness and physiological plausibility of explanations can be achieved in interpreting classifications obtained from DNNs in diagnostic neuroimaging applications by evaluating convergence across methods. This will be crucial for trust in AI-based medical diagnostics in the future.