학술논문

Vision-Controlled Micro Flying Robots: From System Design to Autonomous Navigation and Mapping in GPS-Denied Environments
Document Type
Periodical
Source
IEEE Robotics & Automation Magazine IEEE Robot. Automat. Mag. Robotics & Automation Magazine, IEEE. 21(3):26-40 Sep, 2014
Subject
Robotics and Control Systems
Aerospace
Components, Circuits, Devices and Systems
Computing and Processing
Engineering Profession
General Topics for Engineers
Signal Processing and Analysis
Transportation
Power, Energy and Industry Applications
Robot navigation
Helicopters
Mobile robots
Payloads
Batteries
Surveillance
Intelligent vehicles
Aircraft navigation
Global Positioning System
Drones
Autonomous microhelicopters
Language
ISSN
1070-9932
1558-223X
Abstract
Autonomous microhelicopters will soon play a major role in tasks like search and rescue, environment monitoring, security surveillance, and inspection. If they are further realized in small scale, they can also be used in narrow outdoor and indoor environments and represent only a limited risk for people. However, for such operations, navigating based only on global positioning system (GPS) information is not sufficient. Fully autonomous operation in cities or other dense environments requires microhelicopters to fly at low altitudes, where GPS signals are often shadowed, or indoors and to actively explore unknown environments while avoiding collisions and creating maps. This involves a number of challenges on all levels of helicopter design, perception, actuation, control, and navigation, which still have to be solved. The Swarm of Micro Flying Robots (SFLY) project was a European Union-funded project with the goal of creating a swarm of vision-controlled microaerial vehicles (MAVs) capable of autonomous navigation, three-dimensional (3-D) mapping, and optimal surveillance coverage in GPS-denied environments. The SFLY MAVs do not rely on remote control, radio beacons, or motion-capture systems but can fly all by themselves using only a single onboard camera and an inertial measurement unit (IMU). This article describes the technical challenges that have been faced and the results achieved from hardware design and embedded programming to vision-based navigation and mapping, with an overview of how all the modules work and how they have been integrated into the final system. Code, data sets, and videos are publicly available to the robotics community. Experimental results demonstrating three MAVs navigating autonomously in an unknown GPS-denied environment and performing 3-D mapping and optimal surveillance coverage are presented.