학술논문

Experimental Evaluations of TDD-Based Massive MIMO Deployment for Mobile Network Operators
Document Type
Periodical
Source
IEEE Access Access, IEEE. 8:33202-33214 2020
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Massive MIMO
5G mobile communication
Channel estimation
Antennas
Bandwidth
Long Term Evolution
Experiments
massive MIMO
measurements
real-world testbed
TDD
FDD
Language
ISSN
2169-3536
Abstract
Massive Multiple Input Multiple Output (MIMO) is an essential component for future wireless cellular networks. One of its biggest advantages is to use the 5G spectrum more intelligently by extending both coverage (via high gain adaptive beamforming) and capacity (via high order spatial multiplexing). In this paper, we evaluate the performance of Time-division duplex (TDD)-based massive MIMO deployment scenario in one of the commercial sites in Turkey. Our experimental results reveal three major contributions: (i) TDD-based massive MIMO in 10 Mhz reveals up to 212% and 50% higher cell throughput compared to Frequency-division duplex (FDD)-based MIMO deployments with 10 Mhz and 20 Mhz respectively. The Downlink (DL) throughput is also observed to be better in mid/far points. (ii) Together with the usage of TDD-based massive MIMO inside the same commercial site, median values of total cell traffic, Uplink (UL) Spectral Efficiency (SE) and DL schedule Transmission Time Interval (TTI) duty cycle have improved 38%, 9% and 14.5% compared to FDD-based MIMO scenario respectively. (iii) Finally, we address some of the challenges of the massive MIMO deployments and the possible trade-offs that can be observed in terms of Radio Resource Control (RRC)-connected User Equipments (UEs), cell throughput, available Sounding Reference Signal (SRS) resources and pairing opportunities provided by massive MIMO.