학술논문

Predictive Model for Designing Soft-Tissue Mimicking Ultrasound Phantoms With Adjustable Elasticity
Document Type
Periodical
Source
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control IEEE Trans. Ultrason., Ferroelect., Freq. Contr. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on. 67(4):715-726 Apr, 2020
Subject
Fields, Waves and Electromagnetics
Phantoms
Predictive models
Acoustics
Mechanical factors
Biological tissues
Elasticity
Elastography
Acoustic properties
elastography
mechanical properties
phantom
ultrasound (US)
Language
ISSN
0885-3010
1525-8955
Abstract
The use of mechanically representative phantoms is important for experimental validation in ultrasound (US) imaging, elastography, and image registration. This article proposes a model to predict the elastic modulus of a soft tissue-mimicking phantom based on two very easily controllable parameters: gelatin concentration and refrigeration duration. The model has been validated on small- and large-scale phantoms; it provides a good prediction of the elastic modulus in both cases (error < 16.2%). The tissue-mimicking phantom is made following a low-cost and simple fabrication procedure using commercial household gelatin with psyllium hydrophilic mucilloid fiber to obtain echogenicity. A large range of elastic properties was obtained (15–100kPa) by adjusting the gelatin concentration between 5% and 20% (g/mL) and the refrigeration time of the sample between 2 and 168 h, allowing to mimic normal and pathological human soft tissues. The phantom’s acoustic properties (velocity, attenuation, and acoustic impedance) are also assessed using the American Institute of Ultrasound in Medicine (AIUM) standard.