학술논문

Crash-Prone Fault Combination Identification for Over-Actuated Vehicles During Evasive Maneuvers
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:37256-37275 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Actuators
Road traffic
Friction
Fault diagnosis
Accidents
Wheels
Brakes
Fault tolerant systems
Stability analysis
Vehicle safety
Vehicle crash testing
Design for experiments
Autonomous vehicle
crash avoidance
evasive maneuvers
over-actuated vehicle
sliding mode control
vehicle coupled controllers
Language
ISSN
2169-3536
Abstract
Throughout a vehicle’s lifecycle, systems may fail during operation, requiring effective fault management by the vehicle controller. Various system faults affect vehicle handling differently. Additionally, vehicle velocity and road friction directly impact handling and stability. Thus, it is essential to investigate relevant factors, such as actuator faults, vehicle velocity, road friction, and their combinations, before developing a fault-tolerant controller to mitigate potential critical situations. Our work thus focuses on identifying faults and fault combinations that might lead to crashes for over-actuated vehicles during evasive maneuvers and those impacting comfort parameters. We employ a state-of-the-art vehicle controller optimized for evasive lane changes for over-actuated vehicles. The driving scenario encompasses critical conditions defined in ISO 26262 with ASIL-D, including velocities up to 130 km/h and requiring steering away from obstacles. Failure Mode and Effects Analysis, Design of Experiments, and statistical tools are used to determine fault combinations most likely to lead to crashes during evasive maneuvers. Our results indicate that the vehicle controller successfully handled the maneuver in over 53% of investigated cases, reaching up to 75.1% on dry surfaces. Road friction emerges as the most critical parameter for collision avoidance and comfort. Brake faults exhibit a higher influence on vehicle handling than other actuator faults, while single motor faults do not significantly impact vehicle parameters. Regarding two-factor interactions, brake actuators dominate, followed by steering and motor. These findings provide valuable insights for developing fault-tolerant controllers for over-actuated vehicles, guiding decisions on addressing specific faults to enhance safety and comfort parameters.