학술논문

Toward MR-Guided Robotic Intracerebral Hemorrhage Evacuation: Aiming Device Design and ex vivo Ovine Head Trial
Document Type
Periodical
Source
IEEE Transactions on Medical Robotics and Bionics IEEE Trans. Med. Robot. Bionics Medical Robotics and Bionics, IEEE Transactions on. 6(2):577-588 May, 2024
Subject
Bioengineering
Robotics and Control Systems
Computing and Processing
Connectors
Electron tubes
Neurosurgery
Hemorrhaging
Medical robotics
Biomimetics
Optical fibers
MRI
stereotactic
concentric tube robot
intracerebral hemorrhage evacuation
Language
ISSN
2576-3202
Abstract
Stereotactic neurosurgery is a well-established surgical technique for navigation and guidance during treatment of intracranial pathologies. Intracerebral hemorrhage (ICH) is an example of various neurosurgical conditions that can benefit from stereotactic neurosurgery. As a part of our ongoing work toward real-time MR-guided ICH evacuation, we aim to address an unmet clinical need for a skull-mounted frameless stereotactic aiming device that can be used with minimally invasive robotic systems for MR-guided interventions. In this paper, we present NICE-Aiming, a Neurosurgical, Interventional, Configurable device for Effective-Aiming in MR-guided robotic neurosurgical interventions. A kinematic model was developed and the system was used with a concentric tube robot (CTR) for ICH evacuation in (i) a skull phantom and (ii) in the first ever reported ex vivo CTR ICH evacuation using an ex vivo ovine head. The NICE-Aiming prototype provided a tip accuracy of 1.41±0.35 mm in free-space. In the MR-guided gel phantom experiment, the targeting accuracy was 2.07±0.42 mm and the residual hematoma volume was 12.87 mL (24.32% of the original volume). In the MR-guided ex vivo ovine head experiment, the targeting accuracy was 2.48±0.48 mm and the residual hematoma volume was 1.42 mL (25.08% of the original volume).