학술논문

GLA-GCN: Global-local Adaptive Graph Convolutional Network for 3D Human Pose Estimation from Monocular Video
Document Type
Conference
Source
2023 IEEE/CVF International Conference on Computer Vision (ICCV) ICCV Computer Vision (ICCV), 2023 IEEE/CVF International Conference on. :8784-8795 Oct, 2023
Subject
Computing and Processing
Signal Processing and Analysis
Training
Adaptation models
Three-dimensional displays
Adaptive systems
Pose estimation
Detectors
Trajectory
Language
ISSN
2380-7504
Abstract
3D human pose estimation has been researched for decades with promising fruits. 3D human pose lifting is one of the promising research directions toward the task where both estimated pose and ground truth pose data are used for training. Existing pose lifting works mainly focus on improving the performance of estimated pose, but they usually underperform when testing on the ground truth pose data. We observe that the performance of the estimated pose can be easily improved by preparing good quality 2D pose, such as fine-tuning the 2D pose or using advanced 2D pose detectors. As such, we concentrate on improving the 3D human pose lifting via ground truth data for the future improvement of more quality estimated pose data. Towards this goal, a simple yet effective model called Global-local Adaptive Graph Convolutional Network (GLA-GCN) is proposed in this work. Our GLA-GCN globally models the spatiotemporal structure via a graph representation and backtraces local joint features for 3D human pose estimation via individually connected layers. To validate our model design, we conduct extensive experiments on three benchmark datasets: Human3.6M, HumanEva-I, and MPI-INF-3DHP. Experimental results show that our GLA-GCN 1 implemented with ground truth 2D poses significantly outperforms state-of-the-art methods (e.g., up to 3%, 17%, and 14% error reductions on Human3.6M, HumanEva-I, and MPI-INF-3DHP, respectively).