학술논문

A novel spatiotemporal tool for the automatic classification of fMRI noise based on Independent Component Analysis
Document Type
Conference
Source
2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Engineering in Medicine & Biology Society (EMBC), 2020 42nd Annual International Conference of the IEEE. :1718-1721 Jul, 2020
Subject
Bioengineering
Integrated circuits
Functional magnetic resonance imaging
Tools
Task analysis
Correlation
Sensitivity
Brain
Language
ISSN
2694-0604
Abstract
In this study, a semi-automatic, easy-to-use classification method for the identification and removal of fMRI noise is proposed and tested. The method relies on subject-level spatial independent component analysis (ICA) of fMRI data. Starting from a reference set of labeled independent components (ICs), novel ICs are classified as physiological/artefactual by combining a spatial correlation (SC) analysis with the reference ICs and relative power spectral (PS) analysis. Here, ICs from a task-based fMRI dataset were used as reference. SC and SP thresholds were set using a test dataset (5 subjects, same fMRI protocol) based on Receiving Operating Characteristic curves. The tool performance and versatility were measured on a resting-state fMRI dataset (5 subjects). Our results show that the method can automatically identify noise-related ICs with accuracy, specificity and sensitivity higher than 80% across different fMRI protocols. These findings also suggest that the reference set provided in the present study might be used to mark ICs coming from independent taskrelated or resting-state fMRI datasets.Clinical relevance— The new method will be included in a userfriendly, open-source tool for removal of noisy contributions from fMRI datasets to be used in clinical and research practices.