학술논문

A Machine Learning and Optimization Framework for the Early Diagnosis of Bovine Respiratory Disease
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:71164-71179 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Cows
Costs
Pulmonary diseases
Machine learning
Labeling
Investment
Feature extraction
Complexity theory
Internet of Things
Accelerometers
Dairy calves
precision IoT technologies
machine learning
cost-sensitive optimization
Language
ISSN
2169-3536
Abstract
Bovine Respiratory Disease (BRD) is an infection of the respiratory tract that is the leading reason for antimicrobial use in dairy calves and represents 22% of calf mortalities. The costs and effects of BRD can severely damage a farm’s economy, since raising dairy calves is one of the largest economic investments, and diagnosing BRD requires intensive and specialized labor that is hard to find. Precision technologies based on the Internet of Things (IoT), such as automatic feeders, scales, and accelerometers, can help detect behavioral changes before outward clinical signs of BRD. Such early detection enables early treatment, and thus faster recovery, with less long term effects. In this paper, we propose a framework for BRD diagnosis, its early detection, and identification of BRD persistency status using precision IoT technologies. We adopt a machine learning model paired with a cost-sensitive feature selection problem called Cost Optimization Worth (COW). COW maximizes prediction accuracy given a budget constraint. We show that COW is NP-Hard, and propose an efficient heuristic with polynomial complexity called Cost-Aware Learning Feature (CALF). We validate our methodology on a real dataset collected from 159 calves during the preweaning period. Results show that our approach outperforms a recent state-of-the-art solution. Numerically, we achieve an accuracy of 88% for labeling sick and healthy calves, 70% of sick calves are predicted 4 days prior to diagnosis, and 80% of persistency status calves are detected within the first five days of sickness.