학술논문

An End-to-End Multi-Task and Fusion CNN for Inertial-Based Gait Recognition
Document Type
Periodical
Source
IEEE Access Access, IEEE. 7:1897-1908 2019
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Task analysis
Gait recognition
Sensor fusion
Legged locomotion
Mechanical sensors
Gait
inertial
CNN
fusion
multi-task
Language
ISSN
2169-3536
Abstract
People identification using gait information (i.e., the way a person walks) obtained from inertial sensors is a robust approach that can be used in multiple situations where vision-based systems are not applicable. Typically, previous methods use hand-crafted features or deep learning approaches with pre-processed features as input. In contrast, we present a new deep learning-based end-to-end approach that employs raw inertial data as input. By this way, our approach is able to automatically learn the best representations without any constraint introduced by the pre-processed features. Moreover, we study the fusion of information from multiple inertial sensors and multi-task learning from multiple labels per sample. Our proposal is experimentally validated on the challenging dataset OU-ISIR, which is the largest available dataset for gait recognition using inertial information. After conducting an extensive set of experiments to obtain the best hyper-parameters, our approach is able to achieve state-of-the-art results. Specifically, we improve both the identification accuracy (from 83.8% to 94.8%) and the authentication equal-error-rate (from 5.6 to 1.1). Our experimental results suggest that: 1) the use of hand-crafted features is not necessary for this task as deep learning approaches using raw data achieve better results; 2) the fusion of information from multiple sensors allows to improve the results; and, 3) multi-task learning is able to produce a single model that obtains similar or even better results in multiple tasks than the corresponding models trained for a single task.