학술논문

Fully-Digital Randomization Based Side-Channel Security—Toward Ultra-Low Cost-per-Security
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:68440-68449 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Standards
Resistance
Costs
Cryptography
Signal to noise ratio
Resistors
Hardware
Countermeasures
hiding
localization
low-cost
masking
power-gating
randomization circuits
side-channel analysis
security order
Language
ISSN
2169-3536
Abstract
In this paper we formulate and re-evaluate a recently proposed randomization-based side-channel protection mechanism. The strength of the construction lies with its ability to comply with standard digital design flows and that it provides a security parameter which directly links side-channel security metrics. A detailed leakage model is provided and investigated for the first time, and it is linked to electronic parameters of the randomization mechanism. We develop guidelines and optimization for concrete ASIC constructions, and sheds light on this ultra low-cost leakage-randomization mechanism. The proposed circuit is natural to be utilized without or on top of the popular masking countermeasures. It is demonstrated to be considerably more efficient in terms of attack data-complexity as compared to low-order masking (i.e., number of shares $d=2$ ). In addition, seemingly it is a nice and necessary fit to increase the noise when a too low-noise environment is expected, which impedes masking’s theoretical security. Finally, it is discussed that the proposed mechanism is natural to be embedded with masked designs for higher security-levels ( $d> 2$ ) while lowering significantly their asymptotically quadratic area price-tag as $d$ increase. Robustness results are provided along with post place & route cost estimations for both AES encryption and a more recently proposed permutation such as ISAP. Our design efficiently provides unprecedented three orders-of-magnitude signal-to-noise reduction with a total area-overhead of 21% and 46% for AES and Ascon- $\rho $ , respectively. These factors are more cost-efficient than low-orders masked designs and such mechanisms are sometimes necessary when the inherent noise is not sufficient. However, the joint embedding of the proposed mechanism with masked designs potentially exponentially improve the security level they provide, all whilst enabling electronic-design friendly security mechanism.