학술논문

A 2D smart pixel detector for time resolved protein crystallography
Document Type
Conference
Source
1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record Nuclear science and medical imaging Nuclear Science Symposium and Medical Imaging Conference Record, 1995., 1995 IEEE. 2:748-751 vol.2 1995
Subject
Nuclear Engineering
Power, Energy and Industry Applications
Fields, Waves and Electromagnetics
Engineered Materials, Dielectrics and Plasmas
Signal Processing and Analysis
Bioengineering
Smart pixels
Proteins
Crystallography
Biology
Materials science and technology
Evolution (biology)
X-ray detection
X-ray detectors
Assembly
Bonding processes
Language
Abstract
A smart pixel detector is being developed for Time Resolved Crystallography for biological and material science applications. Using the Pixel Detector presented here, the Laue method will enable the study of the evolution of structural changes that occur within the protein as a function of time. The X-ray pixellated detector is assembled to the integrated circuit through a bump bonding process. Within a pixel size of 150/spl times/150 /spl mu/m/sup 2/, a low noise preamplifier-shaper, a discriminator, a 3 bit counter and the readout logic are integrated. The read out, based on the Column Architecture principle, will accept hit rates above 5/spl times/10/sup 8//cm/sup 2//s with a maximum hit rate per pixel of 1 MHz. This detector will allow time resolved Laue crystallography to be performed in a frameless operation mode, without dead time. Target specifications, architecture and preliminary results on the 8/spl times/8 front-end prototype and the column readout are presented.