학술논문

FissureNet: A Deep Learning Approach For Pulmonary Fissure Detection in CT Images
Document Type
Periodical
Source
IEEE Transactions on Medical Imaging IEEE Trans. Med. Imaging Medical Imaging, IEEE Transactions on. 38(1):156-166 Jan, 2019
Subject
Bioengineering
Computing and Processing
Lung
Computed tomography
Image segmentation
Feature extraction
Detectors
Machine learning
Training
segmentation
X-ray imaging and computed tomography
machine learning
ConvNet
CNN
Language
ISSN
0278-0062
1558-254X
Abstract
Pulmonary fissure detection in computed tomography (CT) is a critical component for automatic lobar segmentation. The majority of fissure detection methods use feature descriptors that are hand-crafted, low-level, and have local spatial extent. The design of such feature detectors is typically targeted toward normal fissure anatomy, yielding low sensitivity to weak, and abnormal fissures that are common in clinical data sets. Furthermore, local features commonly suffer from low specificity, as the complex textures in the lung can be indistinguishable from the fissure when the global context is not considered. We propose a supervised discriminative learning framework for simultaneous feature extraction and classification. The proposed framework, called FissureNet, is a coarse-to-fine cascade of two convolutional neural networks. The coarse-to-fine strategy alleviates the challenges associated with training a network to segment a thin structure that represents a small fraction of the image voxels. FissureNet was evaluated on a cohort of 3706 subjects with inspiration and expiration 3DCT scans from the COPDGene clinical trial and a cohort of 20 subjects with 4DCT scans from a lung cancer clinical trial. On both data sets, FissureNet showed superior performance compared with a deep learning approach using the U-Net architecture and a Hessian-based fissure detection method in terms of area under the precision-recall curve (PR-AUC). The overall PR-AUC for FissureNet, U-Net, and Hessian on the COPDGene (lung cancer) data set was 0.980 (0.966), 0.963 (0.937), and 0.158 (0.182), respectively. On a subset of 30 COPDGene scans, FissureNet was compared with a recently proposed advanced fissure detection method called derivative of sticks (DoS) and showed superior performance with a PR-AUC of 0.991 compared with 0.668 for DoS.