학술논문

Toward Interactive Music Generation: A Position Paper
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:125679-125695 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Music
Deep learning
Task analysis
Mathematical models
Computational modeling
Computer architecture
Transformers
multi-agent systems
music composition
music creativity
music generation
music information retrieval
neural networks
reinforcement learning
Language
ISSN
2169-3536
Abstract
Music generation using deep learning has received considerable attention in recent years. Researchers have developed various generative models capable of imitating musical conventions, comprehending the musical corpora, and generating new samples based on the learning outcome. Although the samples generated by these models are persuasive, they often lack musical structure and creativity. For instance, a vanilla end-to-end approach, which deals with all levels of music representation at once, does not offer human-level control and interaction during the learning process, leading to constrained results. Indeed, music creation is a recurrent process that follows some principles by a musician, where various musical features are reused or adapted. On the other hand, a musical piece adheres to a musical style, breaking down into precise concepts of timbre style, performance style, composition style, and the coherency between these aspects. Here, we study and analyze the current advances in music generation using deep learning models through different criteria. We discuss the shortcomings and limitations of these models regarding interactivity and adaptability. Finally, we draw the potential future research direction addressing multi-agent systems and reinforcement learning algorithms to alleviate these shortcomings and limitations.