학술논문

Modeling subjective fear using skin conductance: a preliminary study in virtual reality
Document Type
Conference
Source
2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Engineering in Medicine & Biology Society (EMBC), 2022 44th Annual International Conference of the IEEE. :3451-3454 Jul, 2022
Subject
Bioengineering
Solid modeling
Pathology
Medical treatment
Virtual reality
Feature extraction
Skin
Physiology
Language
ISSN
2694-0604
Abstract
Reliably measuring fear perception could help evaluate the effectiveness of treatments for pathological conditions such as specific phobias or post-traumatic stress syndrome (e.g., exposure therapy). In this study, we developed a novel vir-tual reality (VR) scenario to induce fear and evaluate the related physiological response by the analysis of skin conductance (SC) signal. Eighteen subjects voluntarily experienced the fear VR scenario while their SC was recorded. After the experiment, each participant was asked to score the perceived subjective fear using a Likert scale from 1 to 10. We used the cvxEDA algorithm to process the collected SC signals and extract several features able to estimate the autonomic response to the fearful stimuli. Finally, the extracted features were linearly combined to model the subjective fear perception scores by means of LASSO linear regression. The sparsification imposed by the LASSO procedure to mitigate the overfitting risk identified an optimal linear model including only the standard deviation of the tonic SC component as a regressor (p = 0.007; R2 = 0.3337). The significant contribution of this feature to the model suggests that subjects experiencing more intense subjective fear have a more variable and unstable sympathetic tone.