학술논문

Creating predictive haptic feedback for obstacle avoidance using a model predictive control (MPC) framework
Document Type
Conference
Source
2015 IEEE Intelligent Vehicles Symposium (IV) Intelligent Vehicles Symposium (IV), 2015 IEEE. :31-36 Jun, 2015
Subject
Communication, Networking and Broadcast Technologies
Robotics and Control Systems
Transportation
Vehicles
Haptic interfaces
Trajectory
Predictive models
Tires
Torque
Mathematical model
Language
ISSN
1931-0587
Abstract
New sensing technologies allow modern vehicles to perceive the environment around them even when human visual perception is limited due to poor lighting or fog. Steer-by-wire technology enables active steering capability in which the driver's command to the roadwheels is augmented for maintaining safety. Predictive controllers can leverage both of these technologies to create shared control safety systems that work with the driver to ensure a safe and collision-free vehicle trajectory. The earlier the system intervenes, the smoother the intervention but the more it interferes with the driver's control authority. Ideally, predictive controllers should still intervene late but also indicate upcoming environmental threats to the driver as early as possible. Haptic feedback provides a good means of communicating information to the driver early. Together with a controller still providing a late intervention fallback, this regime provides an ideal framework for predictive shared control systems. This paper presents a novel technique for creating haptic steering feedback, based on future differences between the predictive controller and the driver. This feedback mirrors the tension between the sometimes competing controller objectives of following the driver and maintaining a feasible path. The paper uses simulation and experiment to investigate the inherent trade-offs of predictive haptic feedback and qualitatively discuss its impact.