학술논문

Holistic Optimization of Trap Distribution for Performance/Reliability in 3-D NAND Flash Using Machine Learning
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:7135-7144 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Artificial neural networks
Machine learning
Flash memories
Voltage
Electron traps
Logic gates
Optimization
Performance evaluation
3D NAND flash
charge trap nitride
device optimization
machine learning
performance
reliability
trap distribution
Language
ISSN
2169-3536
Abstract
A machine learning (ML) method was used to optimize the trap distribution of the charge trap nitride (CTN) to simultaneously improve its performance/reliability (P/R) characteristics, which are tradeoffs in 3-D NAND flash memories. Using an artificial neural network (ANN), we modeled the relationship between trap distributions and P/R characteristics. The ANN was trained using a large experimentally-calibrated technology computer-aided design (TCAD) simulation dataset. The gradient descent method was adapted to optimize the trap distribution, achieving the best P/R characteristics based on the well-trained ANN. Eventually, we found the best trap profile distributed in both space and energy. In particular, the energetic trap distribution had a larger impact on the P/R characteristics than that of the spatial trap distribution. Furthermore, in terms of the P/R characteristics, it was generally preferable to increase all inputs of the energetic trap distribution. However, the acceptor-like trap energy level ( $E_{TA}$ ) and its standard deviation ( $\sigma _{EA}$ ) caused a tradeoff between P/R characteristics; therefore, ML was used to determine their optimal points. The proposed ML method allows the optimization of trap distribution to obtain the best P/R characteristics rapidly and quantitatively. Our findings could be used as a guideline for determining the physical properties of CTN in 3-D NAND flash cells.