학술논문

Computation of the Strain Induced Critical Current Reduction in the 16 T Nb3Sn Test Facility Dipole
Document Type
Periodical
Source
IEEE Transactions on Applied Superconductivity IEEE Trans. Appl. Supercond. Applied Superconductivity, IEEE Transactions on. 33(5):1-5 Aug, 2023
Subject
Fields, Waves and Electromagnetics
Engineered Materials, Dielectrics and Plasmas
Strain
Superconducting magnets
Magnetomechanical effects
Magnetic separation
Magnetic field measurement
Temperature measurement
Fitting
++%24%5F3%24<%2Ftex-math>+<%2Finline-formula>+<%2Fnamed-content>Sn%22">Nb $_3$ Sn
test facility
critical current
dipole
strain sensitivity
Language
ISSN
1051-8223
1558-2515
2378-7074
Abstract
A test facility dipole is being developed at LBNL, targeting a 16 T field in a 144 mm wide aperture. The magnet uses a block design, with two double-pancake coils. In order to minimize motion under the large Lorentz forces, the coils are preloaded against a thick aluminum shell and iron yoke using bladder and key technology. It is then crucial to verify that the performance of the magnet is not degraded due to strain induced on the Nb 3 Sn conductor during assembly, cool-down and powering. The critical current of extracted strands was measured in a varying background magnetic field and as a function of the applied longitudinal strain. Finite element analysis was used to extract the strain state inside the superconducting strands during magnet assembly and operation. This strain was then compared to the measurements to evaluate potential reversible and irreversible effects on the magnet performances. The results suggest that the magnet can reach 16 T with sufficient margin, with no irreversible degradation in the high field region.