학술논문

MLP Neural Network Based Gas Classification System on Zynq SoC
Document Type
Periodical
Source
IEEE Access Access, IEEE. 4:8138-8146 2016
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Wireless sensor networks
Artificial neural networks
Gas detectors
Finite programmable gate array
System-on-chip
Sensor systems
Wireless communications
Radio frequency identification
Artificial neural network
gas identification
FPGA
system on chip (SoC)
ZYNQ
Language
ISSN
2169-3536
Abstract
Systems based on wireless gas sensor networks offer a powerful tool to observe and analyze data in complex environments over long monitoring periods. Since the reliability of sensors is very important in those systems, gas classification is a critical process within the gas safety precautions. A gas classification system has to react fast in order to take essential actions in the case of fault detection. This paper proposes a low latency real-time gas classification service system, which uses a multi-layer perceptron (MLP) artificial neural network to detect and classify the gas sensor data. An accurate MLP is developed to work with the data set obtained from an array of tin oxide (SnO2) gas sensor, based on convex micro hotplates. The overall system acquires the gas sensor data through radio-frequency identification (RFID), and processes the sensor data with the proposed MLP classifier implemented on a system on chip (SoC) platform from Xilinx. Hardware implementation of the classifier is optimized to achieve very low latency for real-time application. The proposed architecture has been implemented on a ZYNQ SoC using fixed-point format and the achieved results have shown that an accuracy of 97.4% has been obtained.