학술논문

A Distributed Architecture of Parallel Buck-Boost Converters and Cascaded Control of DC Microgrids-Real Time Implementation
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:47483-47493 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Voltage control
Microgrids
Mathematical models
Pulse width modulation
Resistance
Fluctuations
Electrical engineering
Power distribution networks
DC machines
Distributed power generation
Energy management
Resource management
Adaptive droop control
distribution generator
DC microgrid
droop control
distributed energy resources
discontinuous conduction mode
Language
ISSN
2169-3536
Abstract
To enhance the stability and reliability of the system, the converters’ parallel operation can be cascaded to address the constraints posed by the substantial integration of renewable resources. Buck-boost DC-DC converters are often controlled via a cascaded control approach to allow parallel operation. The converter’s output current and its voltage will be controlled by nested loop control. This study proposes adaptive droop control parameters that are updated and verified online using the principal current sharing loops to minimize the fluctuation in load current sharing. When the converters in the microgrid are paralleled, load sharing will be accomplished using the droop control approach in addition to nested proportional-integral-based voltage and current control loops. To restore the correct voltage across the DC microgrid, an outer addition voltage secondary loop will be used, rectifying any voltage disparities caused by the droop management strategy. Several common load resistances and input voltage variations are used to test the suggested method. Using a linearized model, this work assesses the stability and performance of the proposed method. It then confirms the findings with an adequate model created in MATLAB/SIMULINK, Real-Time Simulation Fundamentals, and hardware-based experiments.