학술논문

A Fine-Grained System Driven of Attacks Over Several New Representation Techniques Using Machine Learning
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:96615-96625 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Taxonomy
Deep learning
Weapons
Support vector machines
Social networking (online)
Malware
Convolutional neural networks
Machine learning
Computational intelligence
Intrusion detection
Neural networks
computational intelligence
intrusion detection system
deep neural network
convolutional neural network
support vector machine
Language
ISSN
2169-3536
Abstract
Machine Learning (ML) techniques, especially deep learning, are crucial to many contemporary real world systems that use Computational Intelligence (CI) as their core technology, including self-deriving vehicles, assisting machines, and biometric authentication systems. We encounter a lot of attacks these days. Drive-by-download is used to covertly download websites when we view them, and emails we receive often have malicious attachments. The affected hosts and networks sustain significant harm as a result of the infection. Therefore, identifying malware is crucial. Recent attacks, however, is designed to evade detection using Intrusion Detection System (IDS). It is essential to create fresh signatures as soon as new malware is found in order to stop this issue. Using a variety of cutting-edge representation methodologies, we develop attack taxonomy and examine it. 1) N-gram-based representation: In this tactic, we look at a number of random representations that consider a technique of sampling the properties of the graph. 2) Signature-based representation: This technique uses the idea of invariant representation of the graph, which is based on spectral graph theory. One of the main causes is that a ML system setup is rely on a number of variables, including the input dataset, ML architecture, attack creation process, and defense strategy. To find any hostile attacks in the network system, we employ IDS with Deep Neural Network (DNN). In conclusion, the efficacy and efficiency of the suggested framework with Convolutional Neural Network (CNN) and Support Vector Machine (SVM) are assessed using the assessment indicators, including throughput, latency rate, accuracy and precision. The findings of the suggested model with a detection rate of 93%, 14%, 95.63% and 95% in terms of throughput, latency rate, accuracy and precision, which is based on adversarial assault, were better and more effective than CNN and SVM models. Additionally at the end we contrast the performance of the suggested model with that of earlier research that makes use of the same dataset, NSL-KDD, as we do in our scenario.