학술논문

An Enhanced CoAP Scheme Using Fuzzy Logic With Adaptive Timeout for IoT Congestion Control
Document Type
Periodical
Source
IEEE Access Access, IEEE. 9:58967-58981 2021
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Fuzzy logic
Delays
Servers
Internet of Things
Protocols
Throughput
Market research
Adaptive timeout
congestion control
constrained application protocol
fuzzy logic systems
Language
ISSN
2169-3536
Abstract
Congestion management in the Internet of Things (IoT) is one of the most challenging tasks in improving the quality of service (QoS) of a network. This is largely because modern wireless networks can consist of an immense number of connections. Consequently, limited network resources can be consumed simultaneously. This eventually causes congestion that has adverse impacts on both throughput and transmission delay. This is particularly true in a network whose transmissions are regulated by the Constrained Application Protocol (CoAP), which has been widely adopted in the IoT network. CoAP has a mechanism that allows connection-oriented communication by means of acknowledgment messages (ACKs) and retransmission timeouts (RTOs). However, during congestion, a client node is unable to efficiently specify the RTO, resulting in unnecessary retransmission. This overhead in turn causes even more extensive congestion in the network. Therefore, this research proposes a novel scheme for optimally setting the initial RTO and adjusting the RTO backoff that considers current network utilization. The scheme consists of three main components: 1) a multidimensional congestion estimator that determines congestion conditions in various aspects, 2) precise initial RTO estimation by means of a relative strength indicator and trend analysis, and 3) a flexible and congestion-aware backoff strategy based on an adaptive-boundary backoff factor evaluated by using a fuzzy logic system (FLS). The simulation results presented here reveal that the proposed scheme outperforms state-of-the-art methods in terms of the carried load, delay and percentage of retransmission.