학술논문

Is Release 15 Ready for the Industry?
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:17651-17668 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
5G mobile communication
Industries
Quality of service
Security
Network slicing
Industrial facilities
3GPP
Fourth Industrial Revolution
5G SA
testbed
NPN
network slicing
release 15
Industry 4.0
QoS
industry
Language
ISSN
2169-3536
Abstract
5G technologies are considered a cornerstone of the advent of the next industrial revolution. Promising performance improvements, along with advanced features and assurances in terms of reliability, flexibility and isolation, are expected to enable the realization of diverse and novel use cases, fostering industrial automation with optimized production lines and manufacturing systems. This document shares the experience and knowledge using a 5G SA network for industrial applications. Concretely, the paper examines whether and how the available technology could fulfil the demanding industry requirements, namely in terms of isolation, flexibility and performance. This gap analysis revealed 5G QoS mechanisms as a key driver towards 5G for industry. Thus, a comprehensive analysis of the existing mechanisms and their impact on the network performance are presented, serving as a reality check of 5G SA Release 15 technologies. Although results showed promising possibilities to support industrial deployments, there is still a gap between what’s achievable and what is expected from 5G that will be gradually filled by the introduction of novel features in the upcoming releases. In general, the contributions and insights presented in this paper are considered to be valuable for industry, standards development organizations, manufacturers, and the wider 5G ecosystem. Moreover, this paper serves as a foundational component within a larger endeavour of automating network slicing mechanisms for industrial applications.