학술논문

An Investigation on the Effects of Beam Squint Caused by an Analog Beamformed User Terminal Utilizing Antenna Arrays
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:98230-98243 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Antenna arrays
Array signal processing
Phased arrays
Delays
Gain
Bandwidth
Equalizers
Mean square error methods
Planar arrays
Equaliser
minimal mean square error
uniform linear array
uniform planar array
Language
ISSN
2169-3536
Abstract
In the equivalent frequency-based model, the antenna array gain is utilised to characterise the frequency response of the beam squint effect generated by the antenna array. This impact is considered for a wide range of uniform linear array (ULA) and uniform planar array (UPA) designs, including those with and without tapering configurations. For a closer look at how the frequency response of the array adapts to the variations in the incidence angle of the signal, the bandwidth of the spectrum is varied and investigated. To study this effect, we have considered using the gain array response as an equivalent channel model in our approach. Beam squinting caused by distortion in the frequency response gain can be verified by one of two equalisers: a zero-forcing (ZF) equaliser or a minimum mean square error (MMSE) equaliser. Different cases with their analysis and results are studied and compared in terms of coded and uncoded modulations.