학술논문

Prediction of Antioxidant Activity of Cherry Fruits from UAS Multispectral Imagery Using Machine Learning
Document Type
article
Source
Antioxidants, Vol 9, Iss 2, p 156 (2020)
Subject
antioxidant activity
machine learning
drones
precision farming
Therapeutics. Pharmacology
RM1-950
Language
English
ISSN
2076-3921
Abstract
In this research, a model for the estimation of antioxidant content in cherry fruits from multispectral imagery acquired from drones was developed, based on machine learning methods. For two consecutive cultivation years, the trees were sampled on different dates and then analysed for their fruits’ radical scavenging activity (DPPH) and Folin−Ciocalteu (FCR) reducing capacity. Multispectral images from unmanned aerial vehicles were acquired on the same dates with fruit sampling. Soil samples were collected throughout the study fields at the end of the season. Topographic, hydrographic and weather data also were included in modelling. First-year data were used for model-fitting, whereas second-year data for testing. Spatial autocorrelation tests indicated unbiased sampling and, moreover, allowed restriction of modelling input parameters to a smaller group. The optimum model employs 24 input variables resulting in a 6.74 root mean square error. Provided that soil profiles and other ancillary data are known in advance of the cultivation season, capturing drone images in critical growth phases, together with contemporary weather data, can support site- and time-specific harvesting. It could also support site-specific treatments (precision farming) for improving fruit quality in the long-term, with analogous marketing perspectives.