학술논문

Underwater Acoustic Communication Channel Modeling Using Reservoir Computing
Document Type
article
Source
IEEE Access, Vol 10, Pp 56550-56563 (2022)
Subject
Channel modeling
deep learning
echo state network
reservoir computing
time series prediction
underwater acoustic communication
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Language
English
ISSN
2169-3536
Abstract
Underwater acoustic (UWA) communications have been widely used but greatly impaired due to the complicated nature of the underwater environment. In order to improve UWA communications, modeling and understanding the UWA channel is indispensable. However, there exist many challenges due to the high uncertainties of the underwater environment and the lack of real-world measurement data. In this work, the capability of reservoir computing and deep learning has been explored for modeling the UWA communication channel accurately using real underwater data collected from a water tank with disturbance and from Lake Tahoe. We leverage the capability of reservoir computing for modeling dynamical systems and provided a data-driven approach to modeling the UWA channel using Echo State Network (ESN). In addition, the potential application of transfer learning to reservoir computing has been examined. Experimental results show that ESN is able to model chaotic UWA channels with better performance compared to popular deep learning models in terms of mean absolute percentage error (MAPE), specifically, ESN has outperformed deep neural network by 2% and as much as 40% in benign and chaotic UWA respectively.