학술논문

Partial wave analysis of the charmed baryon hadronic decay Λ c + $$ {\Lambda}_c^{+} $$ → Λπ + π 0
Document Type
article
Author
The BESIII collaborationM. AblikimM. N. AchasovP. AdlarsonM. AlbrechtR. AlibertiA. AmorosoM. R. AnQ. AnX. H. BaiY. BaiO. BakinaR. Baldini FerroliI. BalossinoY. BanV. BatozskayaD. BeckerK. BegzsurenN. BergerM. BertaniD. BettoniF. BianchiJ. BlomsA. BortoneI. BoykoR. A. BriereA. BrueggemannH. CaiX. CaiA. CalcaterraG. F. CaoN. CaoS. A. CetinJ. F. ChangW. L. ChangG. ChelkovC. ChenChao ChenG. ChenH. S. ChenM. L. ChenS. J. ChenS. M. ChenT. ChenX. R. ChenX. T. ChenY. B. ChenZ. J. ChenW. S. ChengS. K. ChoiX. ChuG. CibinettoF. CossioJ. J. CuiH. L. DaiJ. P. DaiA. DbeyssiR. E. de BoerD. DedovichZ. Y. DengA. DenigI. DenysenkoM. DestefanisF. De MoriY. DingJ. DongL. Y. DongM. Y. DongX. DongS. X. DuP. EgorovY. L. FanJ. FangS. S. FangW. X. FangY. FangR. FarinelliL. FavaF. FeldbauerG. FeliciC. Q. FengJ. H. FengK FischerM. FritschC. FritzschC. D. FuH. GaoY. N. GaoYang GaoS. GarbolinoI. GarziaP. T. GeZ. W. GeC. GengE. M. GersabeckA GilmanK. GoetzenL. GongW. X. GongW. GradlM. GrecoL. M. GuM. H. GuY. T. GuC. Y GuanA. Q. GuoL. B. GuoR. P. GuoY. P. GuoA. GuskovT. T. HanW. Y. HanX. Q. HaoF. A. HarrisK. K. HeK. L. HeF. H. HeinsiusC. H. HeinzY. K. HengC. HeroldG. Y. HouY. R. HouZ. L. HouH. M. HuJ. F. HuT. HuY. HuG. S. HuangK. X. HuangL. Q. HuangX. T. HuangY. P. HuangZ. HuangT. HussainN HüskenW. ImoehlM. IrshadJ. JacksonS. JaegerS. JanchivE. JangJ. H. JeongQ. JiQ. P. JiX. B. JiX. L. JiY. Y. JiZ. K. JiaH. B. JiangS. S. JiangX. S. JiangY. JiangJ. B. JiaoZ. JiaoS. JinY. JinM. Q. JingT. JohanssonN. Kalantar-NayestanakiX. S. KangR. KappertM. KavatsyukB. C. KeI. K. KeshkA. KhoukazR. KiuchiR. KliemtL. KochO. B. KolcuB. KopfM. KuemmelM. KuessnerA. KupscW. KühnJ. J. LaneJ. S. LangeP. LarinA. LavaniaL. LavezziZ. H. LeiH. LeithoffM. LellmannT. LenzC. LiC. H. LiCheng LiD. M. LiF. LiG. LiH. LiH. B. LiH. J. LiH. N. LiJ. Q. LiJ. S. LiJ. W. LiKe LiL. J LiL. K. LiLei LiM. H. LiP. R. LiS. X. LiS. Y. LiT. LiW. D. LiW. G. LiX. H. LiX. L. LiXiaoyu LiY. G. LiZ. X. LiH. LiangY. F. LiangY. T. LiangG. R. LiaoL. Z. LiaoJ. LibbyA. LimphiratC. X. LinD. X. LinT. LinB. J. LiuC. X. LiuD. LiuF. H. LiuFang LiuFeng LiuG. M. LiuH. LiuH. B. LiuH. M. LiuHuanhuan LiuHuihui LiuJ. B. LiuJ. L. LiuJ. Y. LiuK. LiuK. Y. LiuKe LiuL. LiuLu LiuM. H. LiuP. L. LiuQ. LiuS. B. LiuT. LiuW. K. LiuW. M. LiuX. LiuY. LiuY. B. LiuZ. A. LiuZ. Q. LiuX. C. LouF. X. LuH. J. LuJ. G. LuX. L. LuY. LuY. P. LuZ. H. LuC. L. LuoM. X. LuoT. LuoX. L. LuoX. R. LyuY. F. LyuF. C. MaH. L. MaL. L. MaM. M. MaQ. M. MaR. Q. MaR. T. MaX. Y. MaY. MaF. E. MaasM. MaggioraS. MaldanerS. MaldeQ. A. MalikA. MangoniY. J. MaoZ. P. MaoS. MarcelloZ. X. MengJ. MesschendorpG. MezzadriH. MiaoT. J. MinR. E. MitchellX. H. MoN. Yu. MuchnoiY. NefedovF. NerlingI. B. NikolaevZ. NingS. NisarY. NiuS. L. OlsenQ. OuyangS. PacettiX. PanY. PanA. PathakM. PelizaeusH. P. PengK. PetersJ. L. PingR. G. PingS. PluraS. PogodinV. PrasadF. Z. QiH. QiH. R. QiM. QiT. Y. QiS. QianW. B. QianZ. QianC. F. QiaoJ. J. QinL. Q. QinX. P. QinX. S. QinZ. H. QinJ. F. QiuS. Q. QuK. H. RashidC. F. RedmerK. J. RenA. RivettiV. RodinM. RoloG. RongCh. RosnerS. N. RuanH. S. SangA. SarantsevY. SchelhaasC. SchnierK. SchoenningM. ScodeggioK. Y. ShanW. ShanX. Y. ShanJ. F. ShangguanL. G. ShaoM. ShaoC. P. ShenH. F. ShenX. Y. ShenB. A. ShiH. C. ShiJ. Y. ShiQ. Q. ShiR. S. ShiX. ShiX. D ShiJ. J. SongW. M. SongY. X. SongS. SosioS. SpataroF. StielerK. X. SuP. P. SuY. J. SuG. X. SunH. SunH. K. SunJ. F. SunL. SunS. S. SunT. SunW. Y. SunX SunY. J. SunY. Z. SunZ. T. SunY. H. TanY. X. TanC. J. TangG. Y. TangJ. TangL. Y TaoQ. T. TaoM. TatJ. X. TengV. ThorenW. H. TianY. TianI. UmanB. WangB. L. WangC. W. WangD. Y. WangF. WangH. J. WangH. P. WangK. WangL. L. WangM. WangM. Z. WangMeng WangS. WangT. WangT. J. WangW. WangW. H. WangW. P. WangX. WangX. F. WangX. L. WangY. WangY. D. WangY. F. WangY. H. WangY. Q. WangYaqian WangZ. WangZ. Y. WangZiyi WangD. H. WeiF. WeidnerS. P. WenD. J. WhiteU. WiednerWilkinsonM. WolkeL. WollenbergJ. F. WuL. H. WuL. J. WuX. WuX. H. WuY. WuY. J WuZ. WuL. XiaT. XiangD. XiaoG. Y. XiaoXiaoS. Y. XiaoY. L. XiaoZ. J. XiaoC. XieX. H. XieY. XieY. G. XieY. H. XieZ. P. XieT. Y. XingC. F. XuC. J. XuG. F. XuH. Y. XuQ. J. XuX. P. XuY. C. XuZ. P. XuF. YanL. YanW. B. YanW. C. YanH. J. YangH. L. YangH. X. YangL. YangS. L. YangTao YangY. F. YangY. X. YangYifan YangM. YeM. H. YeJ. H. YinZ. Y. YouB. X. YuC. X. YuG. YuT. YuX. D. YuC. Z. YuanL. YuanS. C. YuanX. Q. YuanY. YuanZ. Y. YuanC. X. YueA. A. ZafarF. R. ZengX. Zeng ZengY. ZengY. H. ZhanA. Q. ZhangB. L. ZhangB. X. ZhangD. H. ZhangG. Y. ZhangH. ZhangH. H. ZhangH. Y. ZhangJ. L. ZhangJ. Q. ZhangJ. W. ZhangJ. X. ZhangJ. Y. ZhangJ. Z. ZhangJianyu ZhangJiawei ZhangL. M. ZhangL. Q. ZhangLei ZhangP. ZhangQ. Y. ZhangShuihan ZhangShulei ZhangX. D. ZhangX. M. ZhangX. Y. ZhangY. ZhangY. T. ZhangY. H. ZhangYan ZhangYao ZhangZ. H. ZhangZ. Y. ZhangG. ZhaoJ. ZhaoJ. Y. ZhaoJ. Z. ZhaoLei ZhaoLing ZhaoM. G. ZhaoS. J. ZhaoY. B. ZhaoY. X. ZhaoZ. G. ZhaoA. ZhemchugovB. ZhengJ. P. ZhengY. H. ZhengB. ZhongC. ZhongX. ZhongH. ZhouL. P. ZhouX. ZhouX. K. ZhouX. R. ZhouX. Y. ZhouY. Z. ZhouJ. ZhuK. ZhuK. J. ZhuL. X. ZhuS. H. ZhuS. Q. ZhuT. J. ZhuW. J. ZhuY. C. ZhuZ. A. ZhuJ. H. Zou
Source
Journal of High Energy Physics, Vol 2022, Iss 12, Pp 1-33 (2022)
Subject
Branching fraction
Charm Physics
e +-e − Experiments
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
Language
English
ISSN
1029-8479
Abstract
Abstract Based on e + e − collision samples corresponding to an integrated luminosity of 4.4 fb −1 collected with the BESIII detector at center-of-mass energies between 4.6 GeV and 4.7 GeV, a partial wave analysis of the charmed baryon hadronic decay Λ c + $$ {\Lambda}_c^{+} $$ → Λπ + π 0 is performed, and the decays Λ c + $$ {\Lambda}_c^{+} $$ → Λρ(770)+ and Λ c + $$ {\Lambda}_c^{+} $$ → Σ(1385)π are studied for the first time. Making use of the world-average branching fraction B Λ c + → Λ π + π 0 $$ \mathcal{B}\left({\Lambda}_c^{+}\to \Lambda {\pi}^{+}{\pi}^0\right) $$ , their branching fractions are determined to be B Λ c + → Λ ρ 770 + = 4.06 ± 0.30 ± 0.35 ± 0.23 × 10 − 2 , B Λ c + → Σ 1385 + π 0 = 5.86 ± 0.49 ± 0.52 ± 0.35 × 10 − 3 , B Λ c + → Σ 1385 0 π + = 6.47 ± 0.59 ± 0.66 ± 0.38 × 10 − 3 , $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Lambda}_c^{+}\to \Lambda \rho {(770)}^{+}\right)=\left(4.06\pm 0.30\pm 0.35\pm 0.23\right)\times {10}^{-2},\\ {}\mathcal{B}\left({\Lambda}_c^{+}\to \varSigma {(1385)}^{+}{\pi}^0\right)=\left(5.86\pm 0.49\pm 0.52\pm 0.35\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Lambda}_c^{+}\to \varSigma {(1385)}^0{\pi}^{+}\right)=\left(6.47\pm 0.59\pm 0.66\pm 0.38\right)\times {10}^{-3},\end{array}} $$ where the first uncertainties are statistical, the second are systematic, and the third are from the uncertainties of the branching fractions B Λ c + → Λ π + π 0 $$ \mathcal{B}\left({\Lambda}_c^{+}\to \varLambda {\pi}^{+}{\pi}^0\right) $$ and B Σ 1385 → Λ π $$ \mathcal{B}\left(\Sigma (1385)\to \Lambda \pi \right) $$ . In addition, the decay asymmetry parameters are measured to be α Λρ(770)+ = − 0.763 ± 0.053 ± 0.045, α Σ 1385 + π 0 = − 0.917 ± 0.069 ± 0.056 $$ {\alpha}_{\Sigma (1385)+{\pi}^0}=-0.917\pm 0.069\pm 0.056 $$ , and α Σ 1385 0 π + = − 0.789 ± 0.098 ± 0.056 $$ {\alpha}_{\Sigma {(1385)}^0{\pi}^{+}}=-0.789\pm 0.098\pm 0.056 $$ .