학술논문

Detecting and predicting forest degradation: A comparison of ground surveys and remote sensing in Tanzanian forests
Document Type
article
Source
Plants, People, Planet, Vol 3, Iss 3, Pp 268-281 (2021)
Subject
biodiversity conservation
carbon emissions
community‐based forest management
East Africa
global forest watch
human disturbance
Environmental sciences
GE1-350
Botany
QK1-989
Language
English
ISSN
2572-2611
Abstract
Societal Impact Statement Large areas of tropical forest are degraded. While global tree cover is being mapped with increasing accuracy from space, much less is known about the quality of that tree cover. Here we present a field protocol for rapid assessments of forest condition. Using extensive field data from Tanzania, we show that a focus on remotely‐sensed deforestation would not detect significant reductions in forest quality. Radar‐based remote sensing of degradation had good agreement with the ground data, but the ground surveys provided more insights into the nature and drivers of degradation. We recommend the combined use of rapid field assessments and remote sensing to provide an early warning, and to allow timely and appropriately targeted conservation and policy responses. Summary Tropical forest degradation is widely recognised as a driver of biodiversity loss and a major source of carbon emissions. However, in contrast to deforestation, more gradual changes from degradation are challenging to detect, quantify and monitor. Here, we present a field protocol for rapid, area‐standardised quantifications of forest condition, which can also be implemented by non‐specialists. Using the example of threatened high‐biodiversity forests in Tanzania, we analyse and predict degradation based on this method. We also compare the field data to optical and radar remote‐sensing datasets, thereby conducting a large‐scale, independent test of the ability of these products to map degradation in East Africa from space. Our field data consist of 551 ‘degradation’ transects collected between 1996 and 2010, covering >600 ha across 86 forests in the Eastern Arc Mountains and coastal forests. Degradation was widespread, with over one‐third of the study forests—mostly protected areas—having more than 10% of their trees cut. Commonly used optical remote‐sensing maps of complete tree cover loss only detected severe impacts (≥25% of trees cut), that is, a focus on remotely‐sensed deforestation would have significantly underestimated carbon emissions and declines in forest quality. Radar‐based maps detected even low impacts (