학술논문

Research on Johnson–Cook Constitutive Model of γ-TiAl Alloy with Improved Parameters
Document Type
article
Source
Materials, Vol 16, Iss 20, p 6715 (2023)
Subject
γ-TiAl alloy
Johnson–Cook constitutive model
strain rate
thermal deformation
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Language
English
ISSN
1996-1944
Abstract
Due to its excellent physical properties, γ-TiAl alloy has been widely used in thin-walled components of aerospace engines. However, issues such as low thermal conductivity, poor machinability, and high cutting temperatures often result in difficulties in ensuring the geometric accuracy and surface integrity of the parts. This paper focuses on the study of the thermal deformation behavior of γ-TiAl alloy within a range of higher temperatures and strain rates. Firstly, by conducting quasi-static tests and Hopkinson bar tests on γ-TiAl alloy, the true stress–strain curves of γ-TiAl alloy are obtained within a temperature range of 20~500 °C and a strain rate range of 3000~11,000/s. Based on the Johnson–Cook model, the true stress–strain curves are fitted and analyzed with consideration of the coupling effect of strain rate, temperature, and strain. The strain rate hardening coefficient C and thermal softening exponent m are polynomialized, improving the Johnson–Cook constitutive model of γ-TiAl alloy. The improved model shows significant improvements in the correlation coefficient and absolute errors between the predicted values and experimental values, providing a better reflection of the thermal deformation behavior of γ-TiAl alloy within a range of higher temperatures and strain rates.