학술논문

Impacts of Varying Blood Flow Restriction Cuff Size and Material on Arterial, Venous and Calf Muscle Pump-Mediated Blood Flow
Document Type
article
Source
Oxygen, Vol 3, Iss 2, Pp 190-202 (2023)
Subject
arterial occlusion pressure
limb occlusion pressure
calf muscle pump
ultrasound
arterial flow
subjective discomfort
Analytical chemistry
QD71-142
Inorganic chemistry
QD146-197
Language
English
ISSN
2673-9801
Abstract
Blood flow restriction (BFR) may become ineffective or potentially dangerous without sufficient standardization. The purpose of this investigation was therefore to (1) assess the viability of multiple sizes of a novel BFR cuff to determine arterial occlusion pressure (AOP) and (2) compare resting arterial, venous and calf muscle pump (cMP)-mediated blood flow between the aforementioned conditions and a commonly employed wide-rigid, tourniquet-style cuff. In randomized, counter-balanced, and crossover fashion, 20 apparently healthy males (18–40 years) donned a widely employed wide-rigid (WR) cuff, along with the largest (NE) and manufacturer-recommended sizes (NER) of a novel narrow-elastic cuff. Participants subsequently assessed AOP, as well as (at 80%AOP) arterial, venous, and venous cMP flow relative to baseline values via ultrasound. All analyses were performed at a significance level of p < 0.05. Analyses revealed a significant condition effect for AOP (p < 0.001; ηp2 = 0.907) whereby WR was significantly lower than both NE and NER; in addition, the latter two did not differ. Compared with baseline, there were no statistically significant differences between cuffs for either arterial or cMP-mediated blood flow. Unsurprisingly, no participants demonstrated venous blood flow at 80% AOP. These findings support the viability of a novel narrow-elastic BFR product, evidenced by consistent AOP acquisition and equivocal blood flow parameters.